The molds used in this work were created using acrylic and composed of 5 parts, which form the fabrication mold and prefusion chamber (Fig. S1). The TEBV (2 layers) fabrication mold is formed from parts A, B, and C. Part A housed the mandrels about which TEBVs were made and is used in both the fabrication mold and prefusion chamber. There are four steel hollow mandrels (outer diameter 0.63 mm, inner diameter 0.33 mm) at opposite sides of part A, which are mirror reflections of each other and link the assembled chamber to the perfusion tubing and pump. In the fabrication step, the halves of each mandrel are inserted into the chamber (Part A) and brought into contact with each other (Fig. S1ai and S1bi). Part B forms the top layer of the seeding mold with inlets/outlets and grooves, and part C is the bottom layer of the seeding mold with grooves (Suppl Fig. S1aii and S1bii). The grooves on the top and bottom layers each form four semicircular channels (diameter 2.2 mm, length 24 mm) to be used as molds. Once the high-density collagen containing the hNDFs is added and gelled, parts B and C are removed, and the collagen TEBVs are dehydrated. Then the mandrels are drawn out forming a lumen. Following fixation of the collagen tubing on the mandrels, two new flat covers are added (parts D and E) and the final perfusion chamber is completed. The steel mandrels are used for perfusion, with one side acting as the media inlet, and the other as the outlet.
This “tumor-on-a-chip” platform incorporates human tumor and stromal cells that grow in a 3D extracellular matrix and that depend for survival on nutrient delivery through living, perfused microvessels.
A monoculture of various cancer cell lines used to provide companion growth data for cancer cell lines that are used in the parent, 3D Vascularized Tumor Model.
This site requires cookies to function properly. Cookies are also used for basic analytics to better serve users. Data are collected anonymously, and not sold or otherwise distributed by the proprietors of this site. By using this site, you consent to the cookies necessary for its basic function. If you would like to customize cookies click here.
Essential cookies are defined as those that are necessary for a website to function correctly, such as maintaining a user's session and supporting the secure transmission of data.
Non-essential cookies in the case of the BioSystics-AP are currently limited to the integration of Google Analytics for the purposes of improving the platform. Examples of the information captured include the user's country of origin, the pages they visit, and the type of device/browser used to do so.